Heat shock proteins as mediators of aggregation-induced ‘danger’ signals: implications of the slow evolutionary fine-tuning of sequences for the antigenicity of cancer cells

1999 ◽  
Vol 4 (4) ◽  
pp. 205
Author(s):  
Donald R. Forsdyke
2019 ◽  
Vol 73 ◽  
pp. 563-571
Author(s):  
Joanna Jakubowicz-Gil ◽  
Roman Paduch ◽  
Krystyna Skalicka-Woźniak ◽  
Joanna Sumorek-Wiadro ◽  
Adrian Zając ◽  
...  

Aim: The aim of the present study was to investigate the efficacy of osthole (7-metoxy-8-isopenthenocoumarin) alone and combined with tamoxifen (TAM) in the elimination of human cervical cancer cells via programmed death. The involvement of heat shock proteins, i.e. well-known molecular chaperones, will be investigated. Material/Methods: Three human cervical cancer cell lines, infected with human papilloma virus (HPV), i.e. HeLa (HPV 18), SiHa (HPV 16), and CaSki (HPV 16 and 18), were used in the experiments. After osthole and TAM treatment, cells stained with fluorochromes were analyzed microscopically according to apoptotic, autophagic, and necrotic morphology. Hsp27, Hsp72, and Hsp90 levels were analyzed by immunoblotting. Transfection with specific siRNA was used for blocking of Hsp expression. Results: In the HeLa, CaSki, and SiHa cell lines, osthole and TAM applied alone had no significant effect on cell death induction. This was correlated with an overexpression of heat shock proteins 27, 72, and 90. In the case of a combination of both drugs, the level of apoptosis was elevated only in SiHa cells. Preincubation with osthole followed by TAM addition as well as simultaneous incubation with both drugs was the most effective. This was correlated with the inhibition of Hsp27, Hsp72, and Hsp90 expression. Blocking of Hsp expression with specific siRNA increased the sensitivity of the studied cell lines to the induction of apoptosis, but not to autophagy or necrosis. Conclusions: Our results indicated that the elimination of heat shock proteins from cervical cancer cells sensitized them to initiation of apoptosis after osthole and tamoxifen treatment.


2019 ◽  
Vol 20 (19) ◽  
pp. 4758 ◽  
Author(s):  
Hyun Ban ◽  
Tae-Su Han ◽  
Keun Hur ◽  
Hyun-Soo Cho

Heat shock proteins (HSPs) are associated with various physiological processes (protein refolding and degradation) involved in the responses to cellular stress, such as cytotoxic agents, high temperature, and hypoxia. HSPs are overexpressed in cancer cells and play roles in their apoptosis, invasion, proliferation, angiogenesis, and metastasis. The regulation or translational modification of HSPs is recognized as a therapeutic target for the development of anticancer drugs. Among the regulatory processes associated with HSP expression, the epigenetic machinery (miRNAs, histone modification, and DNA methylation) has key functions in cancer. Moreover, various epigenetic modifiers of HSP expression have also been reported as therapeutic targets and diagnostic markers of cancer. Thus, in this review, we describe the epigenetic alterations of HSP expression in cancer cells and suggest that HSPs be clinically applied as diagnostic and therapeutic markers in cancer therapy via controlled epigenetic modifiers.


2001 ◽  
Vol 31 (7) ◽  
pp. 2051-2059 ◽  
Author(s):  
Minka Breloer ◽  
Brigitte Dorner ◽  
Solveig H. Moré ◽  
Tanja Roderian ◽  
Bernhard Fleischer ◽  
...  

2019 ◽  
Vol 20 (18) ◽  
pp. 4508 ◽  
Author(s):  
Pierre Martine ◽  
Cédric Rébé

Heat shock proteins (HSP) regulate inflammation in many physiological contexts. However, inflammation is a broad process, involving numerous cytokines produced by different molecular pathways with multiple functions. In this review, we focused on the particular role of HSP on the inflammasomes intracellular platforms activated by danger signals and that enable activation of inflammatory caspases, mainly caspase-1, leading to the production of the pro-inflammatory cytokine IL-1β. Interestingly, some members of the HSP family favor inflammasomes activation whereas others inhibit it, suggesting that HSP modulators for therapeutic purposes, must be carefully chosen.


2007 ◽  
Vol 361-363 ◽  
pp. 1207-1210 ◽  
Author(s):  
Patrick Frayssinet ◽  
Daniel Ciocca ◽  
Nicole Rouquet

Cancer cells synthesize abnormal proteins and peptides which are associated to heat shock proteins being overproduced by these cells due to the stress induced by the particular biology of cancer tissue. We have purified on hydroxylapatite powder heat shock proteins using the HAparticles as purification bed, vectors for the proteins and vaccination adjuvant. The powder make possible that the purified HSPs and their associated peptides are transfected to the antigen presenting cells and presented to the T cells for the destruction of the cancer cells bearing the antigens.


Biochemistry ◽  
2006 ◽  
Vol 45 (31) ◽  
pp. 9434-9444 ◽  
Author(s):  
Youngsoo Kim ◽  
Antonietta M. Lillo ◽  
Sebastian C. J. Steiniger ◽  
Ying Liu ◽  
Carlo Ballatore ◽  
...  

2019 ◽  
Vol 18 (15) ◽  
pp. 2093-2109 ◽  
Author(s):  
Zdzisław Krawczyk ◽  
Agnieszka Gogler-Pigłowska ◽  
Damian R. Sojka ◽  
Dorota Scieglinska

Background: Cisplatin (CDDP), a small molecule platinum-based compound, is an effective anticancer drug used against a wide range of human neoplasms. Long-term clinical use of CDDP is however limited due to the development of drug resistance and the possible incidence of serious side effects including nephrotoxicity and ototoxicity. The mechanisms underlying resistance of cells to CDDP are complex, and among them, the cytoprotective involvement of proteins referred to as Heat Shock Proteins (HSP) seems potentially important. Methods: We searched various electronic databases including PubMed and selected the reports concerning the contribution of HSPs to CDDP resistance of cancer cells and to minimize the CDDP-induced nephrotoxicity and ototoxicity. Results: This critical review of data collected so far summarizes the results on the major HSPs: HSP27/HSPB1, HSP70/HSPA1, HSP90/HSPC and GRP78/HSPA5, because only these have been the subject of the most intense research in the matter discussed here. We also provide relevant information concerning some other HSPs, namely HSPA9/mortalin, HSPA2, HSP110 and DNAJ. A possible role of HSPs in counteracting CDDP-induced neprho- and ototoxicity is mentioned. Conclusions: This review shows that no universal relationship between the levels of expression of HSPs and sensitivity of cancer cells to CDDP can be confirmed. Multiple observations indicate however that such correlation can rather manifest as a molecular or cellular context-dependent phenomenon. Thus, HSPs can be viewed as an important component of the multifactorial, complex response of cancer cells to CDDP. However, to strengthen such a conviction, more extensive studies are needed.


Sign in / Sign up

Export Citation Format

Share Document